HOW TO ROTATE A VECTOR

MARC A. MURISON

Astronomical Applications Deptartment, U. S. Naval Observatory, Washington, DC murison@aa.usno.navy.mil

November 23, 1998

ABSTRACT

Rotation of a vector around a direction in space is shown.

Key words: vectors — vector analysis — Euclidean geometry

1. ROTATION OF A VECTOR.

We wish to rotate a vector \vec{v} counterclockwise around an axis \vec{w} by an angle φ . The geometric picture is illustrated in Figure 1. The components of \vec{v} and \vec{v}' perpendicular to \vec{w} are \vec{u} and \vec{u}' . We have

$$\vec{u} = \vec{v} - (\vec{v} \cdot \hat{w}) \,\hat{w} \tag{1}$$

and

$$\vec{u}' = \vec{v}' - (\vec{v} \cdot \hat{w}) \hat{w} \tag{2}$$

since it is apparent that $\vec{v} \cdot \hat{w} = \vec{v}' \cdot \hat{w}$.

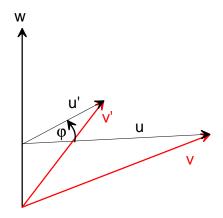


Figure 1

The trick to determining \vec{v}' is to notice that the rotation of the vector is just a coordinate rotation in the $\vec{u}\,\vec{u}'$ plane. The unit vector perpendicular to \vec{u} is $\frac{\vec{w} \times \vec{u}}{\|\vec{w} \times \vec{u}\|}$. Hence we can write \vec{u}' in terms of its components parallel and perpendicular to \vec{u} ,

$$\vec{u}' = u \left(\hat{u} \cos \varphi + \frac{\hat{w} \times \vec{u}}{\|\hat{w} \times \vec{u}\|} \sin \varphi \right) \tag{3}$$

But $\|\hat{w} \times \vec{u}\| = \sqrt{u^2 - (\vec{u} \cdot \hat{w})^2} = u$, so

$$\vec{u}' = \vec{u}\cos\varphi - \vec{u}\times\hat{w}\sin\varphi \tag{4}$$

Now, from (2) we have

$$\vec{\mathbf{v}}' = \vec{\mathbf{u}}' + (\vec{\mathbf{v}} \cdot \hat{\mathbf{w}}) \hat{\mathbf{w}} \tag{5}$$

Using (4) for \vec{u}' and (1) for \vec{u} , this becomes

$$\vec{v}' = \vec{u}\cos\varphi - \vec{u} \times \hat{w}\sin\varphi + (\vec{v} \cdot \hat{w})\hat{w}$$

$$= [\vec{v} - (\vec{v} \cdot \hat{w})\hat{w}]\cos\varphi$$

$$- [\vec{v} - (\vec{v} \cdot \hat{w})\hat{w}] \times \hat{w}\sin\varphi$$

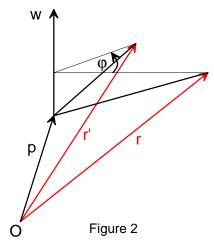
$$+ (\vec{v} \cdot \hat{w})\hat{w}$$
(6)

Hence we have the result

$$\vec{v}' = \vec{v}\cos\varphi + (1 - \cos\varphi)(\vec{v} \cdot \hat{w})\,\hat{w} - \vec{v} \times \hat{w}\sin\varphi$$
(7)

2. ROTATION OF A POSITION VECTOR AROUND A POINT IN SPACE.

Now consider a position vector \vec{r} relative to a coordinate origin O. We wish to rotate this position vector counterclockwise by and angle φ around an axis \vec{w} with anchor point \vec{p} . See Figure 2.



Notice that eq. (7) can be viewed as a linear operator, $\vec{R}_{\hat{w},o}(\vec{v})$, acting on the argument \vec{v} . That is, let

$$\vec{R}_{\hat{w},\phi}(\vec{v}) \equiv \vec{v}\cos\varphi + (1-\cos\varphi)(\vec{v}\cdot\hat{w})\,\hat{w} - \vec{v}\times\hat{w}\,\sin\varphi \quad (8)$$

Then it is apparent from Figure 2 that the rotated position vector can be written

$$\vec{r}' = \vec{p} + \vec{R}_{\hat{w}, \phi}(\vec{r} - \vec{p}) \tag{9}$$